

2008 OEGセミナー

車載電子部品における ESD・ラッチアップ試験の現状と実績

2008年7月8日

沖エンジニアリング株式会社

信頼性設計事業部 加藤 且宏

目次

- 1. 車載電子部品におけるESD・ ラッチアップ試験の現状と課題
- 2. 評価 · 解析事例
- 3.各試験への沖エンジニアリングの適応状況
- 4. まとめ

車載電子部品における ESD・ラッチアップ試験の 現状と課題

自動車のエレクトロニクス化の加速

従来:制御系システム(主にマイコン) 現在~将来:無線・画像・パワー系など多様化

エンジン・コントロール・ユニット パワー・ウィンドウ オートマチック・トランスミッション パワー・ステアリング アンチロック・ブレーキシステム エアバッグ・システム 各種センサ・RF無線通信 インテリジェントパネル(カーナビからPCへ) インバータ(電力制御) 路車間通信(オートクルーズ)

自動車の電子化がキーテクノロジ

利便性

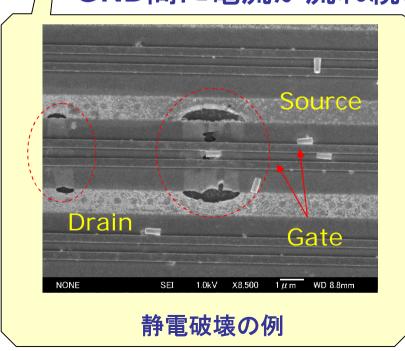
省エネ性

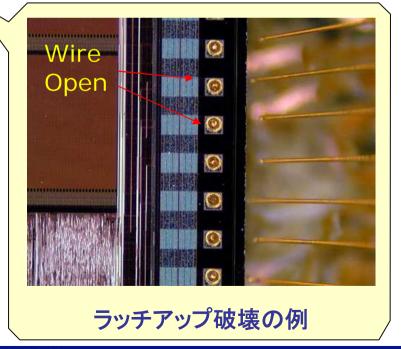
静電破壊耐性・ラッチアップ耐性

→部品レベルでの信頼性の作り込み

URL: http://www.oeg.co.jp/

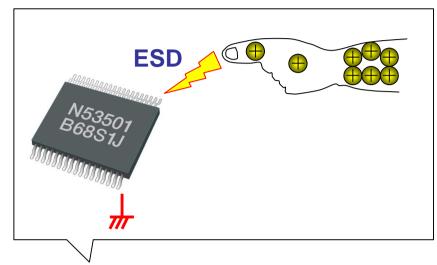
快適性




静電破壊とラッチアップ

静電破壊(ESD: Electro-Static Discharge) 静電気放電によってデバイスが破壊される現象。

ラッチアップ (Latch-up)


CMOSデバイスの寄生サイリスタがターンオンし、電源ーGND間に電流が流れ続ける現象(デバイス破壊発生)



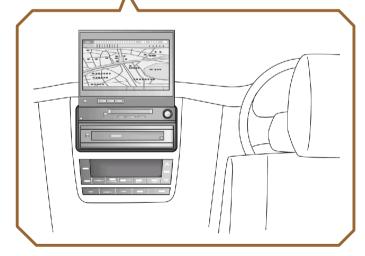
静電破壊・ラッチアップ耐性の試験方法

- ・電子部品製造者が実施(半導体・ディスクリート)
- デバイス単体の破壊(劣化) 耐性評価
- ・ESD試験とラッチアップ試験が それぞれ存在

システムレベル試験

- ・システム製造者が実施 (電子部品ユーザ)
- ・システムの破壊(誤動作) 耐性評価
- ・破壊耐性がESD試験、 誤動作耐性がラッチアップ試験

ESD試験の現状と課題

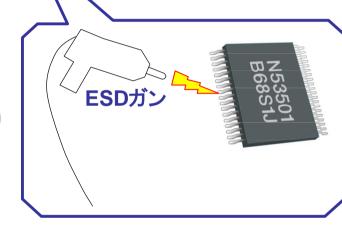

同一名称で異なる試験規格

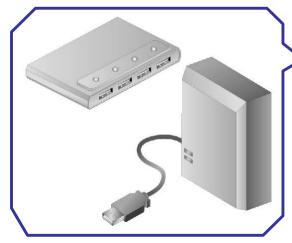
	コンポーネント(部品)ESD試験					システムESD試験	
規格名種類	JEITA ED-4701	JEDEC JESD22	ESDA STM5.X	AEC- Q100	IEC- 60749	IEC- 61000-4-2	ISO- 10605
HBM							
MM	-					-	-
Direct-CDM		-				-	-
FI-CDM	-					-	-

- ・部品ESD試験/システムESD試験 ともにHBM (Human Body Model)
- ・試験回路、強度分類が異なる

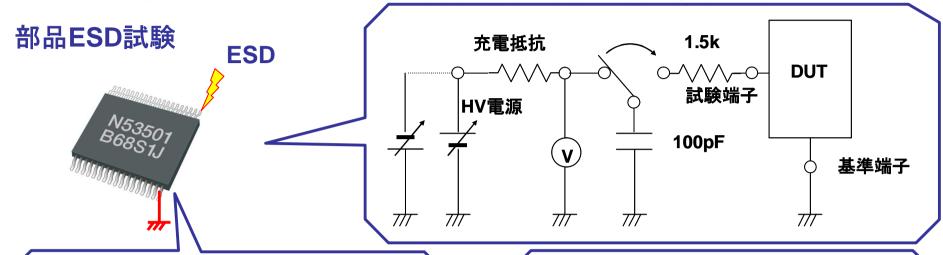
部品(デバイス)メーカの動向と環境変化

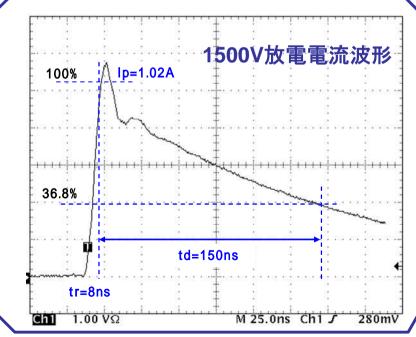
システムレベルESD試験規格への適合性をアピールする動き


(M社、N社ともに有力なAECメンバー)



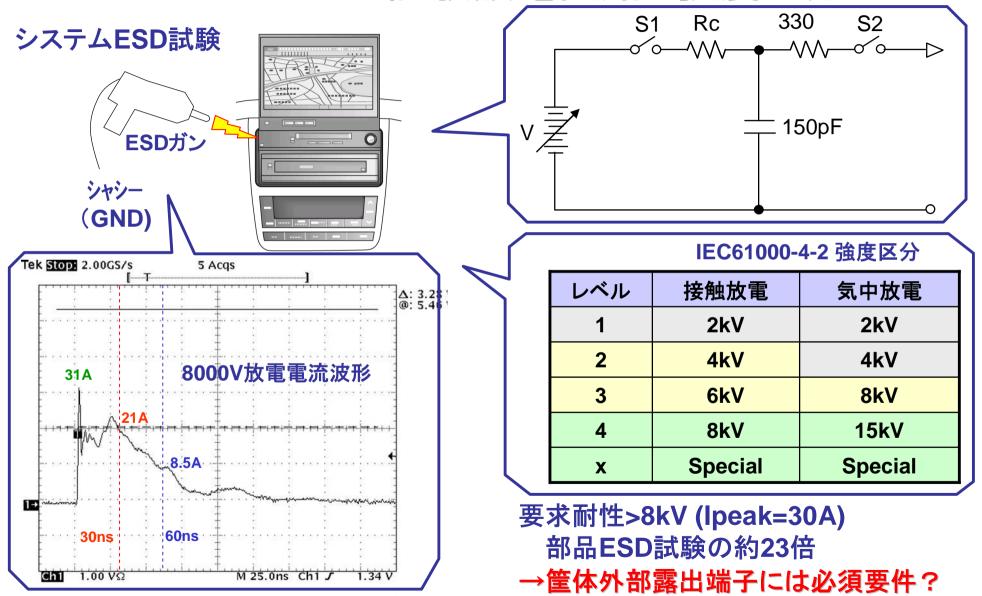
·システムの小型·軽量化 (ESDストレスの影響:大)




システムESD試験のストレスが部品単体へ 加わりやすいアプリケーション (アンテナ端子、インターフェイス機器接続端子)

システムESD試験がデバイス単体の信頼性でも差別化の要素になりつつある

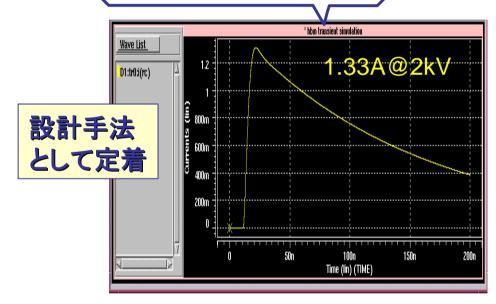
部品ESD試験の放電回路と強度区分


AEC-Q100 002 RevDの 強度区分

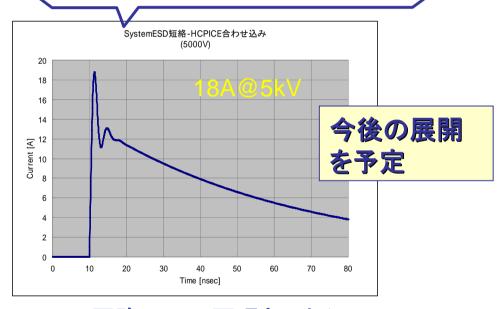
НО	0~250 V			
H1A	251~ <u>500V</u>			
H1B	501~ <u>1000V</u>			
H1C	1001~ <u>1500V</u>			
	1501~ <u>2000V</u>			
H2	2001~4000V			
НЗА	4001~8000 V			
нзв	8001 V 以上			

要求耐性>2kV (Ipeak: 1.33A)

システムESD試験放電回路と強度区分



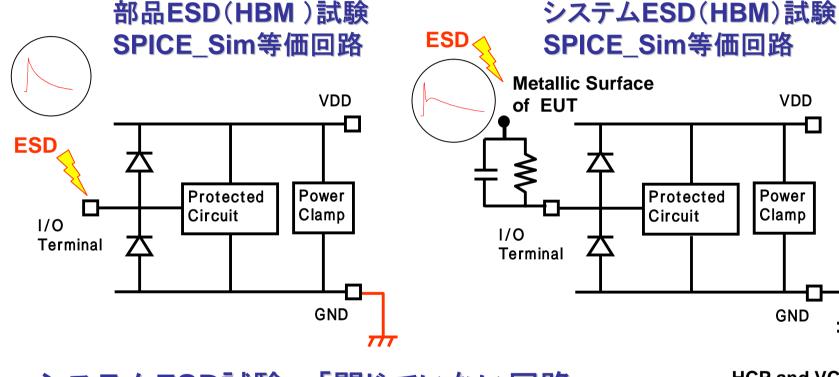
システムESD対応設計への SPICEシミュレーションの応用


電子部品の保護回路をSPICE シミュレーションを使って最適化する手法

部品ESD試験対応保護 回路設計では一般化

SPICE回路Sim.で再現させた部品 ESD試験放電電流波形

システムESD試験対応保護回路 設計にも適用可能



SPICE回路Sim.で再現させたシステムESD試験放電電流波形

システムESD試験の放電ストレスにもSPICE_Simを適用できる環境が整いつつある

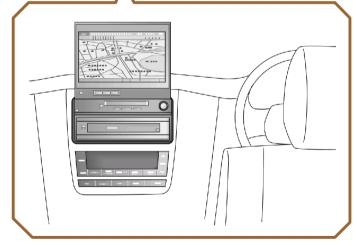
SPICEシミュレーション適用に向けた課題

- ・システムESD試験=「閉じていない回路」
 - ・印加側と接地側の容量と抵抗の見積
 - ・サージの畳重効果の有無(反射波の影響)
 - ・放電波形の測定(GHz帯インパルス波形の計測)

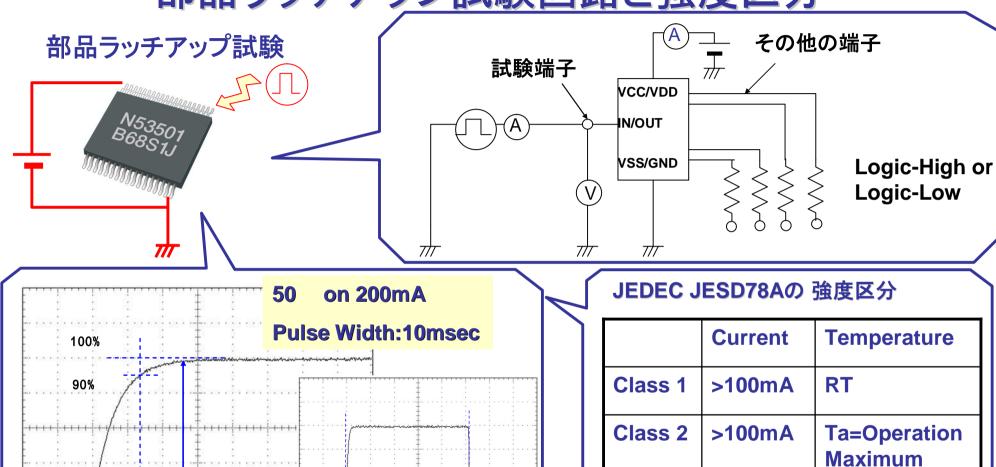
URL: http://www.oeg.co.jp/

VDD

ラッチアップ試験の現状と課題


ラッチアップ試験の課題~トリガパルスの乖離

	コンポーネント(部品)ラッチアップ試験					システムイミュニティ試験	
規格名	JEITA	JEDEC	ESDA	AEC-	IEC-	IEC-	ISO-
種類	ED-4701	JESD78	STM5.X	Q100	60749	61000-4-2	10605
電流パルス			-			-	-
電圧パルス	-	-	-	-	-		
電源過電圧			-		_	-	-



- ・システム誤動作試験は電圧ノイズ
- ・トリガ源が両者で異なる
- ・部品ラッチアップ試験に電圧パルスの公的規格は存在しない

部品ラッチアップ試験回路と強度区分

要求耐性>100mA (Ta; Max) トリガパルス幅: 5usec~5sec

M2.00ms Ch1 J

50%

50%

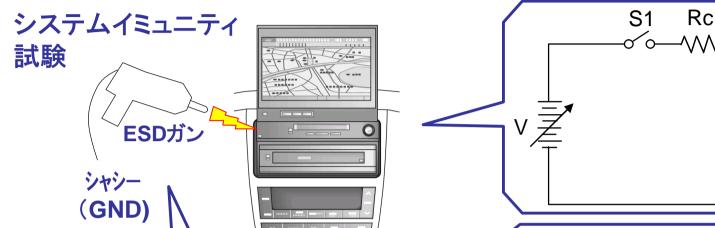
M 200us Chi (100 V

10msec

tp=10ms

 $V_{D} = 10.0V$

tr=300us


10%

Chi 2.00 V

Tek Stop: 2.00GS/s

システムイミュニティ試験放電回路と強度区分

Δ: 3.28 @: 5.46

IEC61000-4-2 強度区分

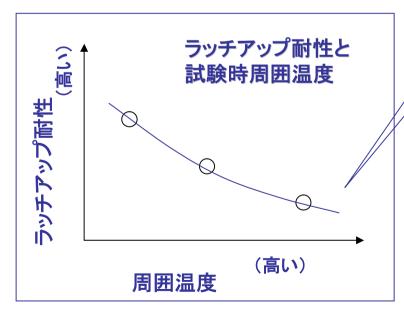
レベル	接触放電	気中放電
1	2kV	2kV
2	4kV	4kV
3	6kV	8kV
4	8kV	15kV
X	Special	Special

31A 8000V放電電流波形 21A 8.5A 30ns 60ns

M 25.0ns Ch1 J

5 Acqs

要求耐性>8kV (Ipeak=30A) トリガパルス幅: ~数100nsec


(トランジェント電圧パルス)

1.00 VΩ

ラッチアップ試験の課題~温特評価の必要性

	コンポーネント(部品)ラッチアップ試験					システムイミュニティ試験	
規格名	JEITA	JEDEC	ESDA	AEC-	IEC-	IEC-	ISO-
種類	ED-4701	JESD78	STM5.X	Q100	60749	61000-4-2	10605
電流パルス			-			-	1
電圧パルス	ı	1	-	-	-		
電源過電圧			-			-	•
周囲温度	R	RT 又は 最大動作保証温度				RTのみ	

ラッチアップ耐性は高温で低下

部品ラッチアップ 試験は最大動作 保証温度で実施

システムイミュニティ 試験は室温で実施 (高温下で実施困難)

部品単体の電圧パルス・ラッチアップ試験 最大動作保証温度で実施

システムイミュニティ試験補完の可能性

部品試験とシステム試験の課題と方策(まとめ)

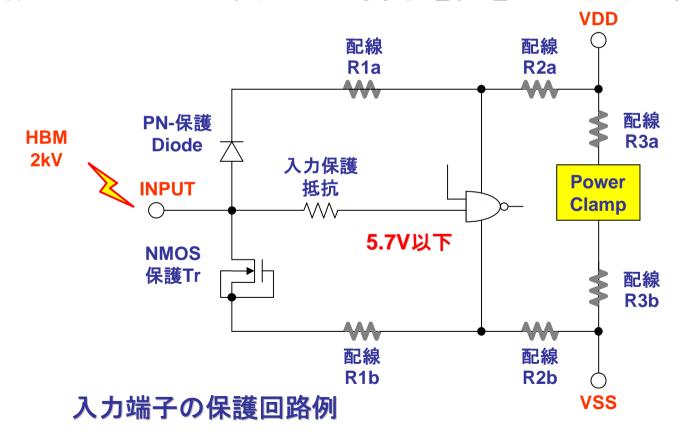
ESD試験

- 部品ESD試験とシステムESD試験ともにHBM
- ・部品単体にシステムESD試験耐性を求める流れ
 - ・システムの小型化(サージ吸収能力の低下)
 - ・部品端子がサージに晒されやすいアプリケーション
- ·Sim手法による最適化(必要な端子に適切な保護回路)

ラッチアップ試験

- ・部品ラッチアップ試験とシステムイミュニティ試験での トリガパルスの乖離
- ・部品ラッチアップ試験への電圧パルス試験の取り込み →(トランジェントラッチアップ)規格化
- ・部品ラッチアップ試験によるイミュニティ試験高温保証の代替

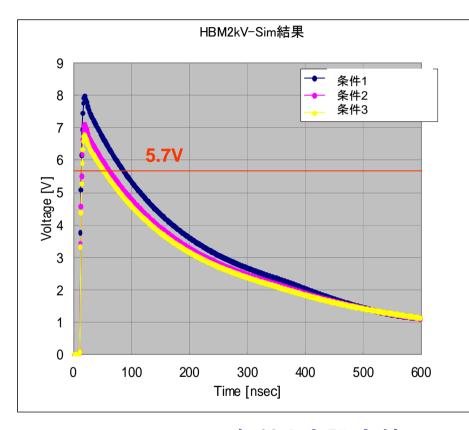
2. 適用事例のご紹介


SPICEシミュレーションを 用いた保護回路設計例

ESDシミュレーションによる保護回路設計

ESDサージを印加した時、所定のノードの電位が設定値を超えないように保護回路を構成する手法

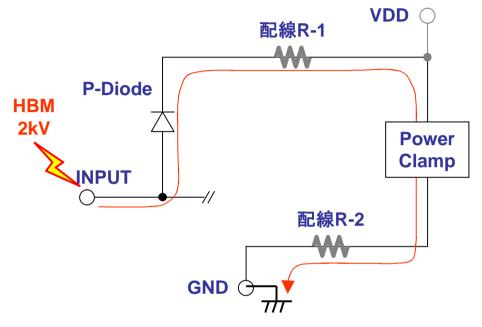
(例) HBM:2kVで、ゲートに掛る電位を5.7V以下に抑える



ESDシミュレーション結果(回路構成)

【PMOS保護の場合】

【Diode保護の場合】


HBM2kV-Sim結果 9 条件1 条件2 8 条件3 7 5.7V 6 Voltage [V] 3 2 1 0 100 200 300 400 500 600 Time [nsec]

PMOSでは、3条件とも設定値 をオーバー 不適

ダイオードでは、条件1のみ設定値を オーバー 条件2を採用

ESDシミュレーション結果(配線抵抗)

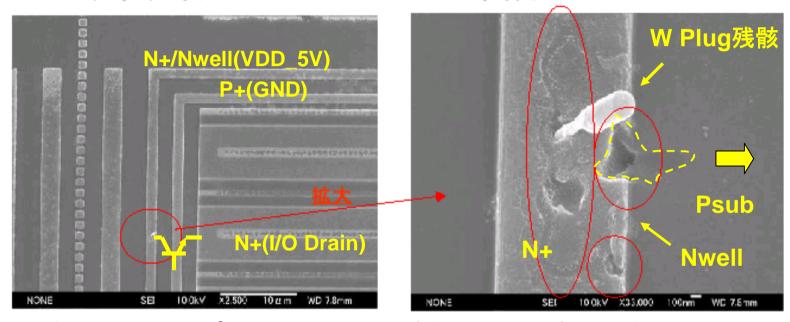
0.6 まで許容範囲→バラツキを考慮して0.5 以下

(配線R-1)+(配線R-2) 0.5

配線R	INPUT電位	判定	
[ohm]	[V]	刊人	
0	4.85	Pass	
0.1	4.98	Pass	
0.2	5.11	Pass	
0.3	5.25	Pass	
0.4	5.38	Pass	
0.5	5.51	Pass	
0.6	5.65	Pass	
0.7	5.78	Fail	
0.8	5.91	Fail	
0.9	6.04	Fail	
1	6.18	Fail	

SPICEシミュレーションを用いた保護回路設計(まとめ)

- ・半導体デバイスの保護回路設計に用いられる手法
- ・SPICEパラメータを使って、ESDサージが入った時の 所定ノードの過渡電圧をシミュレーションする手法
- ・本手法を使うことで、保護回路面積を最適化する (ESD耐性対コスト)
- ・この種の手法をシステムレベルESD試験の保護回路設計に応用することで、同様の効果を期待できる



故障解析と対策例

ガードリングの破壊

Coサリサイドプロセス / NMOS出力Tr

VDD5VをコモンにI/Oポートへ(ー)サージを印加した時に発生症状はサージを印加したI/O端子自身のリークではなく、5V_IDD不良ドレインのN+に向かってサージ電流が流れた痕跡寄生npnTr='ガードリング(N+)ー基板(P+)ーI/Oのドレイン(N+)'のコレクタ側接合が破壊(ドレイン=I/O端子側は順方向なので破壊しない)

故障解析と対策(まとめ)

- -ESD試験で発生した故障品の解析事例
- ・破壊の痕跡と寄生バイポーラTrの構造から 故障メカニズムを想定
 - ・サリサイド構造Trの脆弱性(サージの局所集中)
 - ・ベース・フローティング状態での寄生バイポーラの挙動
- ・素子面積の増加を抑えた改良方法を検討

3.沖エンジニアリングにおける 各種試験への適応状況

各種試験規格への適応状況

	コンポーネント(部品)ESD試験					システムESD試験	
規格名	JEITA	JEDEC	IEC-	ISO-			
種類	ED-4701	JESD22	STM5.X	Q100	60749	61000-4-2	10605
HBM						***	***
MM	-					-	-
Direct-CDM		1				-	-
FI-CDM	-	*	*	*	*	-	-

	コンポーネント(部品)ラッチアップ試験					システムイミュニティ試験	
規格名	JEITA	JEDEC	ESDA	AEC-	IEC-	IEC-	ISO-
種類	ED-4701	JESD78	STM5.X	Q100	60749	61000-4-2	10605
電流パルス			-			-	-
電圧パルス	**	-	-	-	-	***	***
電源過電圧			-			-	-

^{* 2008.7}より、HED-C5002導入開始

^{**} 旧EIAJ AB6201 半導体信頼性委員会内部資料に準ずる *** 簡易評価

まとめ

- ・車載電子部品のESD/ラッチアップ試験のあらゆる ニーズに対応可能(受託試験から対策コンサルまで)
- ・SPICE_SimのシステムレベルESD試験への適用 (納得性のあるソリューションをご提供)
- ・高温ラッチアップ試験の適用 (車載部品のノイズ誤動作耐性を ラッチアップ耐性の尺度でご提供)
- ・部品単体からシステム評価まで、どのような試験のご相談にも対応

ご静聴、有り難う御座いました。

お問合せ先

沖エンジニアリング、株式会社

信頼性設計事業部

TEL: 042-662-6778

福田保裕

E-mail: oeg-esdsales@oki.com

URL: http://www.oeg.co.jp/

ご連絡をお待ちしております

(参考)規格制定団体の略称

JEITA: Japan Electronics and Information Technology Industries Association JEDEC: Joint Electron Device Engineering Council

ESDA: ESD Association

AEC: Automotive Electronics Council

IEC: International Electrotechnical Commission

ISO: the International Organization

for Standardization